Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT This work considers estimation and forecasting in a multivariate, possibly high‐dimensional count time series model constructed from a transformation of a latent Gaussian dynamic factor series. The estimation of the latent model parameters is based on second‐order properties of the count and underlying Gaussian time series, yielding estimators of the underlying covariance matrices for which standard principal component analysis applies. Theoretical consistency results are established for the proposed estimation, building on certain concentration results for the models of the type considered. They also involve the memory of the latent Gaussian process, quantified through a spectral gap, shown to be suitably bounded as the model dimension increases, which is of independent interest. In addition, novel cross‐validation schemes are suggested for model selection. The forecasting is carried out through a particle‐based sequential Monte Carlo, leveraging Kalman filtering techniques. A simulation study and an application are also considered.more » « lessFree, publicly-accessible full text available January 1, 2027
-
ABSTRACT We develop a data‐driven cosegmentation algorithm of passively sensed and self‐reported active variables collected through smartphones to identify emotionally stressful states in middle‐aged and older patients with mood disorders undergoing therapy, some of whom also have chronic pain. Our method leverages the association between the different types of time series. These data are typically nonstationary, with meaningful associations often occurring only over short time windows. Traditional machine learning (ML) methods, when applied globally on the entire time series, often fail to capture these time‐varying local patterns. Our approach first segments the passive sensing variables by detecting their change points, then examines segment‐specific associations with the active variable to identify cosegmented periods that exhibit distinct relationships between stress and passively sensed measures. We then use these periods to predict future emotional stress states using standard ML methods. By shifting the unit of analysis from individual time points to data‐driven segments of time and allowing for different associations in different segments, our algorithm helps detect patterns that only exist within short‐time windows. We apply our method to detect periods of stress in patient data collected during ALACRITY Phase I study. Our findings indicate that the data‐driven segmentation algorithm identifies stress periods more accurately than traditional ML methods that do not incorporate segmentation.more » « lessFree, publicly-accessible full text available May 1, 2026
-
ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.more » « less
-
Complex animated transitions may be easier to understand when divided into separate, consecutive stages. However, effective staging requires careful attention to both animation semantics and timing parameters. We present Gemini^2, a system for creating staged animations from a sequence of chart keyframes. Given only a start state and an end state, Gemini^2 can automatically recommend intermediate keyframes for designers to consider. The Gemini^2 recommendation engine leverages Gemini, our prior work, and GraphScape to itemize the given complex change into semantic edit operations and to recombine operations into stages with a guided order for clearly conveying the semantics. To evaluate Gemini^2's recommendations, we conducted a human-subject study in which participants ranked recommended animations from both Gemini^2 and Gemini. We find that Gemini^2's animation recommendation ranking is well aligned with subjects' preferences, and Gemini^2 can recommend favorable animations that Gemini cannot support.more » « less
An official website of the United States government
